
JOURNAL OF COMPUTATIONAL PHYSICS 67, 214-222 (1986) 

Simplified Second-Order Rezoning Algorithm 
for Generalized Two-Dimensional Meshes*‘? 

JOHN D. RAMSHAW 

Theoretical Division, UniuersitJj of California, 
Los Alamos National Laborarory, Los Alamos, New Mexico 87545 

Received September 11, 1985; revised February 24, 1986 

A second-order conservative rezoning algorithm for generalized two-dimensional meshes 
has recently been described by Dukowicz and Kodis (SIAM J. Sci. Srarist. Comput., in press). 
Here it is shown that this algorithm can be simplified by a different and more symmetrical 
choice of the flux vector F whose divergence is the cell density. The resulting formulation is 
the natural second-order generalization of the simplified first-order algorithm described earlier 
(.I. Compur. Phys. 59, 193 (1985)). 

I. INTRODUCTION 

Recently there has been a renewed interest in the general problem of transferring 
conserved quantities from one generalized finite-difference mesh to another [l-3]. 
This process is commonly referred to as rezoning or remapping; we shall use the 
former term. Dukowicz [l] described a rezoning method for two-dimensional 
meshes of arbitrary quadrilaterals in which the volumetric densities of the conser- 
ved quantities are considered uniform within each cell. The restriction to uniform 
cell densities implies that the discretization errors introduced by the rezoning are of 
first order in the spatial increments. The Dukowicz method is based on the 
introduction of a flux vector F corresponding to each conserved quantity Q of 
interest. The flux vector is defined in such a way that 

V.F=q, (1) 

where q is the volumetric density of the quantity Q (i.e., Q per unit volume) within 
the old (original) mesh. This relation was required to be satisfied everywhere within 
the region of interest, including points on old cell boundaries where q has finite dis- 
continuities. It follows that the flux continuity condition 

F,.n=F,.n (2) 
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FIG. 1. Overlap areas created by superimposing the old mesh (solid lines) and rhe new mesh (dashed 
lines). Elementary o\;erlap areas are those not further subdivided by lines of either mesh. A typical 
elementary overlap area is shaded. 

must be satisfied on old cell boundaries, where F, and Fz are the limiting values of 
F on the boundary as approached from either side, and n is a vector normal to the 
boundary. (Equation (2) is easily derived by integrating Eq. (I) over a small 
“pillbox” on the boundary in the usual way.) Once F has been determined, the 
amount of Q in each cell of the new mesh is obtained by integrating Eq. (I) over 
the area of that cell and using the divergence theorem to reduce the area integral of 
V. F to a line integral of F ~ n over the new cell boundaries. This reduction 
represents a major simplification, which is the reason for introducing F. Dukowicz 
devised an ingenious procedure for evaluating the resulting line integrals efficiently 
by systematically sweeping along the lines of the new mesh. 

Of course, the flux vector F in the Dukowicz method is not uniquely determined 
by the old-mesh density field q. Dukowicz used the freedom available in the choice 
of F to impose the requirement that F have only one nonzero component in a cur- 
vilinear coordinate system aligned with the old mesh. This requirement facilitates 
the satisfaction of Eq. (2). 

A simpler and more direct rezoning method for the case of uniform cell densities 
was subsequently developed [2]. This method was based on a simple algebraic for- 
mula for the elementary overlap areas created by superimposing the old and new 
meshes (see Fig. 1). In this approach there is no explicit use of a flux vector, but it 
was remarked that the method could be interpreted in terms of a flux vector F 
satisfying Eq. (1) in the interior of each old-mesh cell but not on the boundaries. 
The flux continuity condition of Eq. (2) is then no longer satisfied, and V. F con- 
sequently contains delta functions at the old cell boundaries. The area integral of 
V. F over a new cell then differs from the amount of Q in that cell by the con- 
tributions of these delta functions, but the latter can be evaluated and subtracted 
out. When this is done the result is the same as that obtained simply by coc- 
sideration of the overlap areas. Alternatively, the delta functions at old celI boun- 
daries can be circumvented by integrating V. F not over entire new cells at once but 
only over the individual elementary overlap areas. The amount of Q in each new 
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cell is then obtained simply by summing over the elementary overlap areas lying 
within it, and the same final result is again obtained. 

Interpreting the method of Ref. [2] in terms of a discontinuous flux vector is not 
useful in the case of uniform cell densities, but it points the way toward useful 
higher-order generalizations of the Dukowicz method in which the flux continuity 
condition of Eq. (2) is relaxed. A second-order rezoning algorithm of this type has 
been described by Dukowicz and Kodis [3] (DK). Second-order accuracy is 
achieved by taking the density field 4 to be piecewise linear within each cell of the 
old mesh. A discontinuous flux vector F is utilized which satisfies Eq. (1) only in the 
interior of each old-mesh cell but not on its boundaries. Integration of V. F over 
each elementary overlap area then gives the amount of Q therein, regardless of the 
fact that Eq. (2) is not satisfied. These area integrals are converted to line integrals 
of F. n over the old and new cell boundaries, which are efficiently evaluated by 
systematically sweeping through both meshes in the manner of the first-order 
methods [ 1,2]. 

The flux F in the DK method was again chosen to have only one nonzero com- 
ponent, in the spirit of the original Dukowicz method. In the absence of the flux 
continuity condition, however, such a choice is no longer particularly advan- 
tageous. Indeed, it has significant disadvantages: the resulting formulas acquire an 
artificial asymmetry between the two coordinate directions, and they are needlessly 
complicated. Our purpose here is to present a simpler and more symmetrical ver- 
sion of the DK method based upon a different choice of the flux vector F. The 
present formulation is the natural second-order generalization of the simplified lirst- 
order method based on overlap areas [2], to which it reduces in the special case of 
uniform cell densities. As in the DK method, Cartesian and cylindrical coordinates 
are treated together within a unified framework. The resulting formulas subsume 
both cases and specialize easily to either. 

The present formulation is simpler than that of DK, but the two are 
mathematically equivalent and will therefore produce identical results (to within 
roundoff errors). The simpler expressions of the present formulation will be more 
economical to evaluate numerically, but their evaluation is only a small part of the 
total computation so the savings will not be significant. Quite apart from questions 
of efficiency and aesthetics, however, the present formulation has the practical 
advantage that both the rezoning formulas themselves and any computer codes 
based on them are more transparent in structure and hence easier to work with. 

The presentation is reasonably self-contained, but parts of it are somewhat 
abbreviated. These mostly concern aspects treated more fully in Refs. [l-3], with 
which the reader is assumed to be familiar. 

II. THE FLUX VECTOR 

Our first task is to determine a suitable flux vector of simple form for each cell in 
the old mesh, under the supposition that the density 4 varies linearly with position 
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within each such cell. In order to encompass both Cartesian and cylindrical coor- 
dinates within the same general framework, we replace Eq. (1) by 

V.F=Rq, (3) 

where R = I- CI + U, V = i ii/ax + j i7/ar, x and y are rectangular coordinates in the 
plane, i and j are the unit vectors in the X- and I!-directions, respectively, and F has 
been redefined to absorb a factor of R. The Cartesian case is realized by setting 
a = 0. while c( = 1 for the cylindrical case. When IX = 1, x is the radial coordinate r 
and E’ is the axial coordinate Z. Note that in both cases V is defined as the gradient 
operator in the plane, all cylindrical effects being accounted for by the factors of R. 
The quantity Rq has the significance of Q per unit area in the ,ul,-plane for a region 
having a depth of one length unit when a = 0 and one radian when cx = 1. Combin- 
ing the Cartesian and cylindrical cases in this way essentially reduces the latter to 
the former, so that both can be dealt with simply in terms of area integrals and the 
planar divergence theorem [3,4]. 

Now focus attention on a particular but typical cell of the old mesh. The linear 
variation of q with position in this cell is expressed by 

where r = xi + yj is the position vector in the plane, r0 is the point within the cell at 
which the density has the value qo, and G is the uniform value of Vq within the cell. 
The values of qo, G, and r. are of course constrained by the requirement that the 
area integral of Rq over the cell be equal to the known value of the total Q within 
it. It is convenient to let co be the centroid of the cell, whereupon q. becomes the 
average density of the cell [3]. The value of G is somewhat more difficult to specify, 
as it necessarily involves the values of q. in neighboring cells. Moreover, it is 
necessary to impose limits on the allowed values of G in order to prevent the 
rezoning from creating new extrema in the density field [3]. Of course, there is no 
unique procedure for determining and limiting G, and various ways of doing so will 
not be explored here. For present purposes, we simply suppose that G has been 
determined for each cell of the old mesh by the prescriptions of DK [3J which 
appear to work well in practice. 

Since x = i. r. Eq. (4) and the definition of R may be combined with Eq. (3’1 to 
yield 

V.F=A+B.r+r.C.r, 

where 

A = (1 - a)(qo - G. ro), 

B=(l -ti)G+a(q,-G~r,)i, 

C = IxiG. 

(6) 
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The form of Eq. (5) suggests that we attempt to determine a flux of the form 

F = aAr + b(B . r)r + c(r . C. r)r, i7) 
the divergence of which is found to be precisely Eq. (5) if we take a = +, b = f, and 
c = $. We thereby obtain the remarkably simple and symmetrical flux vector 

F = &4r + f(B . r)r + b(r. C . r)r, (8) 

in which A, B, and C are given by Eq. (6). This is the flux vector upon which the 
present development is based. A similar flux vector is defined in each cell of the old 
mesh, the values of A, B, and C therein being given by Eq. (6) in terms of the values 
of qo, G, and r. for that cell. 

III. LINE INTEGRALS 

The basic ingredient in the rezoning procedure is the formula for the line integral 
of F. n along an arbitrary straight line segment. The line segments of interest are 
the sides of the elementary overlap areas, which are segments of the old and new 
mesh lines. Consider a typical straight line segment, with endpoints rl and r2. 
(Which of the endpoints is considered point 1 is immaterial, but it is usually con- 
venient to let it be the point with the lesser value of the spatial index that varies 
along the line.) The line segment will be considered as directed from point rl to 
point rz, so that we may refer unambiguously to the areas lying to the left and right 
of it. These terms are defined with reference to an observer standing on the plane at 
point rl and facing point r2. It is convenient to define 

Ax = x2 -x1, 4=.Y-y1, 

L = ( Ax2 + dy-y2, 

t=L-‘(r,-r,)=L-‘(dxi+dyjj, 

n=L-‘(dyi-dxj). 

(9) 

Here L is just the length of the segment, t is the forward unit tangent, and n is the 
unit normal toward the right. Note that t. n =O. The line integral we wish to 
evaluate is 

I= j*F.ndl, 
1 

where dl is the element of length along the line segment. Points on the line segment 
are parameterized by I according to r = rl + It, which varies from rl at I= 0 to r2 at 
I=L. 
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The fact that the flux F of Eq. (8) is proportional to r yields a considerable sim- 
plification, because r. n = rl n is independent of 1. Indeed, we easily find that 

r.n=L-‘(.u,1!,-.~~,?!,), (!i) 

which simply appears as a common factor outside the integral. 
Inspection of Eq. (8) then shows that, apart from the trivial integral 1 dl= L, the 

integrals we need to evaluate are 

I, = I2 r dl and (12) 
I 

ll=j2rrdi, 
I 

in terms of which Z is simply given by 

Z=(x,)‘2-x2y1) ( ;A+&B.I‘+j-+: II . 1 
The integrals I, and I2 are easily evaluated, with the results 

I, = $L(r, + r2), 

Combining Eqs. (6), (13), and (14), we obtain 

I=t(Xi~z-,Yz~L)[(l-X+fC(X1+fC(XZ)(qo-G.ro) 

+ f( 1 -a++~, +$a.‘~~) G.r, +)(l -a+ ha.lr,+ $x.Y,) G.r,], (15) 

which is our final formula for the basic line integral of interest. The corresponding 
quantity in the DK method [3] is A: Qk, which is given by their Eq. (27 j. The 
present result is seen to be considerably simpler in structure. 

The basic line integral Z of Eq. (15) is of course a function of the segment 
endpoints rl and r2, as well as the parameters qo, G, and r. that characterize the 
density field of the old-mesh cell in question. In what follows, this functional depen- 
dence will be indicated by the notation Z(r,, r,; qo, G, ro), which simply stands for 
the right member of Eq. ( 15). 

IV. THE REZONING PROCEDURE 

Now consider a particular but typical elementary overlap area A (see Fig. 1). The 
amount of the quantity Q contained in A is just 

(i6j 
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where F, is the flux vector of the old-mesh cell in which A lies, ~3~4 is the perimeter 
of A, n is the outward unit normal, and the line integral is traversed in the counter- 
clockwise direction. This line integral is just the sum of contributions of the form of 
Eq. (15) for each side s of the area A. Equation (16) therefore becomes 

!A = C +I(r.‘;, r;; qtf, GA, ro” 1, (17) 

where the summation is over all the sides of A, and E: is either + 1 or - 1 
according as A lies to the left or right, respectively, of side S. Here q{, G”, and rt 
are the values of qo, G, and r. for the old-mesh cell in which A lies. The factor &a in 
Eq. (17) is necessary to allow for the case in which the line segment s is directed 
clockwise from the point of view of the area A. In this way the line segments s can 
be considered as separate entities independent of the particular overlap area under 
consideration, and their endpoints 1 and 2 can be labeled once and for all [2]. 

Equation (17) gives the contribution of the overlap area A to the total Q of the 
new-mesh cell in which A lies. The final value of Q in this new-mesh cell is just the 
sum of the QA contributions from all overlap areas within it. Division by the 
volume of this new-mesh cell then yields the final value of its average density qo. 

Just as in the first-order rezoning methods [ 1,2], it is convenient to evaluate and 
sum these contributions by sweeping over all sides or segments s rather than over 
all overlap areas A. Each segment s is common to two overlap areas, the one on the 
left (L) and the one on the right (R), and therefore contributes to two Q,4’s. Both of 
these contributions contain the same geometrical factors involving x’s, 11;) x;, and 
?!;, so it is efficient to compute them at the same time. The way in which these con- 
tributions are calculated and used depends on whether side s is a segment of the old 
mesh or the new mesh. 

If side s is a segment of the old mesh then it is common to two adjacent cells of 
the old mesh, the L and R cells. The L overlap area associated with side s lies 
entirely within the L cell, whose density field is characterized by qh, GL, and rh. The 
R overlap area lies entirely within the R cell, whose density field is characterized by 
qf, GR, and rt. Both overlap areas lie entirely within the same cell of the new mesh, 
and therefore the contributions of side s to both overlap Q’s may be added to 
obtain the contribution of side s to Q in this cell. According to Eq. (17), the quan- 
tity Q in the new-mesh cell containing side s is therefore to be incremented by an 
amount 

(18) 

Of course, the detailed expression for d y that results when 1 is eliminated (see 
Eq. (15)) may be somewhat simplified by factoring out the common factors involv- 
ing only r; and r;. 

If side s is a segment of the new mesh then it is common to two adjacent cells of 
the new mesh, the L and R cells. The L overlap area associated with side s lies 
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entirely within the L cell, while the R overlap area lies entirely within the R cd. 
Both overlap areas common to side s lie entirely within the same cell C of the old 
mesh, whose density field is characterized by qz, GC, and r,‘. The contribution of 
side s to the L overlap area will then be an increment to QL, while that to the R 
overlap area will be an increment to QR. According to Eq. ( 17), the former con- 
tribution is just 

A: = Z(r;, r;; q$, GC, rg), (!91 

and the latter is just - Af’. Therefore QL is to be incremented by A,V, while QR is to 
be decremented by the same amount. 

One readily verifies that the above expressions for A: and At reduce to those of 
the simplified first-order method [2] when G is everywhere set to zero. The present 
formulation may therefore be regarded as the natural second-order generalization 
of the simplified first-order method. 

The general procedure may therefore be summarized as follows. One first sweeps 
through all the lines of the old mesh, evaluating df for each segment thereof by 
means of Eq. (18). The value of Q in the new-mesh cell containing segment s is to 
be incremented by A:. Next one sweeps through all the lines of the new mesh, 
evaluating A: for each segment thereof by means of Eq. (19). The value of Q in the 
new-mesh cell to the left of segment s is to be incremented by A;, and the value of 
Q in the new-mesh cell to the right is to be decremented by A:. The logic for sweep- 
ing along mesh lines and determining segment endpoints is identical to that of the 
first-order rezoning methods [ 1, 23. Finally, after both mesh sweeps are complete, 
the resulting values of (2 in the new-mesh cells are divided by the corresponding 
new-mesh cell volumes to obtain the average densities q. of the new-mesh cells. 

Ambiguities arising from coincident aid- and new-mesh segments may be 
resolved in a symmetrical manner analogous to that of the corresponding first-order 
method [2]. When such a segment is encountered while sweeping through rhe old 
mesh, A: is calculated in the usual way and Q in each of the two common new- 
mesh cells is incremented by ;A:. When the segment is encountered again while 
sweeping through the new mesh, A: is taken to be the average of 
Z(r;, r;; 46, G”, rk ) and Z(r”,, r;; qt, GR, r,“), where the superscripts L and R refer io 
the two common old-mesh cells. One readily verifies that the net result of this sym- 
metrization is that the segment in question contributes Z(r;, r;; &, G’-, rkj to rhe Q 
of the new-mesh cell on the left, and -Z(r;. r;; qt, GR, r,“) to the Q of the new-mesh 
cell on the right, and these are indeed the proper contributions. 
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